Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Adv Sci (Weinh) ; 9(30): e2203388, 2022 10.
Article in English | MEDLINE | ID: covidwho-2013319

ABSTRACT

Coronavirus disease 2019 continues to spread worldwide. Given the urgent need for effective treatments, many clinical trials are ongoing through repurposing approved drugs. However, clinical data regarding the cardiotoxicity of these drugs are limited. Human pluripotent stem cell-derived cardiomyocytes (hCMs) represent a powerful tool for assessing drug-induced cardiotoxicity. Here, by using hCMs, it is demonstrated that four antiviral drugs, namely, apilimod, remdesivir, ritonavir, and lopinavir, exhibit cardiotoxicity in terms of inducing cell death, sarcomere disarray, and dysregulation of calcium handling and contraction, at clinically relevant concentrations. Human engineered heart tissue (hEHT) model is used to further evaluate the cardiotoxic effects of these drugs and it is found that they weaken hEHT contractile function. RNA-seq analysis reveals that the expression of genes that regulate cardiomyocyte function, such as sarcomere organization (TNNT2, MYH6) and ion homeostasis (ATP2A2, HCN4), is significantly altered after drug treatments. Using high-throughput screening of approved drugs, it is found that ceftiofur hydrochloride, astaxanthin, and quetiapine fumarate can ameliorate the cardiotoxicity of remdesivir, with astaxanthin being the most prominent one. These results warrant caution and careful monitoring when prescribing these therapies in patients and provide drug candidates to limit remdesivir-induced cardiotoxicity.


Subject(s)
COVID-19 Drug Treatment , Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Myocytes, Cardiac/metabolism , Induced Pluripotent Stem Cells/physiology , Calcium/metabolism , Lopinavir/metabolism , Lopinavir/pharmacology , Ritonavir/metabolism , Ritonavir/pharmacology , Quetiapine Fumarate/metabolism , Quetiapine Fumarate/pharmacology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Pluripotent Stem Cells/metabolism , Antiviral Agents/adverse effects
2.
Int J Mol Sci ; 23(10)2022 May 18.
Article in English | MEDLINE | ID: covidwho-1953481

ABSTRACT

Although many efforts have been made to elucidate the pathogenesis of COVID-19, the underlying mechanisms are yet to be fully uncovered. However, it is known that a dysfunctional immune response and the accompanying uncontrollable inflammation lead to troublesome outcomes in COVID-19 patients. Pannexin1 channels are put forward as interesting drug targets for the treatment of COVID-19 due to their key role in inflammation and their link to other viral infections. In the present study, we selected a panel of drugs previously tested in clinical trials as potential candidates for the treatment of COVID-19 early on in the pandemic, including hydroxychloroquine, chloroquine, azithromycin, dexamethasone, ribavirin, remdesivir, favipiravir, lopinavir, and ritonavir. The effect of the drugs on pannexin1 channels was assessed at a functional level by means of measurement of extracellular ATP release. Immunoblot analysis and real-time quantitative reversetranscription polymerase chain reaction analysis were used to study the potential of the drugs to alter pannexin1 protein and mRNA expression levels, respectively. Favipiravir, hydroxychloroquine, lopinavir, and the combination of lopinavir with ritonavir were found to inhibit pannexin1 channel activity without affecting pannexin1 protein or mRNA levels. Thusthree new inhibitors of pannexin1 channels were identified that, though currently not being used anymore for the treatment of COVID-19 patients, could be potential drug candidates for other pannexin1-related diseases.


Subject(s)
COVID-19 Drug Treatment , Connexins , Connexins/genetics , Connexins/metabolism , Drug Repositioning , Humans , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Inflammation , Lopinavir/pharmacology , Lopinavir/therapeutic use , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , RNA, Messenger , Ritonavir
3.
Curr Drug Res Rev ; 14(3): 203-214, 2022.
Article in English | MEDLINE | ID: covidwho-1875265

ABSTRACT

BACKGROUND: COVID-19, first detected in Wuhan, China, has evolved into a lifethreatening pandemic spread across six continents, with the global case count being more than 243 million, and mortality over 4.95 million, along with causing significant morbidity. It has initiated an era of research on repurposed drugs such as hydroxychloroquine, lopinavir/ritonavir, corticosteroids, remedesivir, ivermectin, alongside selective antivirals to treat or prevent COVID- 19. Molnupiravir is an orally available emerging antiviral drug considered highly promising for COVID-19. METHODS AND RESULTS: We have performed a scoping review for the use of molnupiravir against SARS-CoV-2 and COVID-19. It acts by inhibiting RNA-dependent RNA polymerase (RdRp), and exhibits broad-spectrum antiviral activity. Preclinical studies have evaluated the therapeutic efficacy as well as prophylactic activity of molnupiravir against SARS CoV-2 in various animal models that include ferrets, hamsters, mice, immunodeficient mice implanted with human lung tissue and cell cultures, in various doses ranging from 5-300 mg/kg, and results have been encouraging. Initial evidence of safety and efficacy from early phase clinical studies has been encouraging too, and recent results from a large phase 3 global trial have shown significant benefits among symptomatic outpatients. Other late-phase clinical trials are still underway with the aim of establishing molnulpiravir as a therapeutic option for COVID-19, particularly for non-hospitalized patients. CONCLUSION AND RELEVANCE: On the basis of the limited evidence available as of now, molnupiravir could prove to be a promising oral therapy, worthy of further exploration of its utility for both treatment and prevention of COVID-19 in humans. Elaborate clinical evaluation is further warranted to confirm whether the results are replicable to the clinical scenario among outpatients to reduce the chance of progression to more severe disease.


Subject(s)
COVID-19 Drug Treatment , Cricetinae , Humans , Animals , Mice , Lopinavir/pharmacology , Lopinavir/therapeutic use , Ritonavir/pharmacology , Ritonavir/therapeutic use , SARS-CoV-2 , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Ivermectin , Ferrets , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , RNA-Dependent RNA Polymerase , Adrenal Cortex Hormones
4.
Int J Mol Sci ; 23(9)2022 Apr 30.
Article in English | MEDLINE | ID: covidwho-1820294

ABSTRACT

Connexin43 (Cx43) hemichannels form a pathway for cellular communication between the cell and its extracellular environment. Under pathological conditions, Cx43 hemichannels release adenosine triphosphate (ATP), which triggers inflammation. Over the past two years, azithromycin, chloroquine, dexamethasone, favipiravir, hydroxychloroquine, lopinavir, remdesivir, ribavirin, and ritonavir have been proposed as drugs for the treatment of the coronavirus disease 2019 (COVID-19), which is associated with prominent systemic inflammation. The current study aimed to investigate if Cx43 hemichannels, being key players in inflammation, could be affected by these drugs which were formerly designated as COVID-19 drugs. For this purpose, Cx43-transduced cells were exposed to these drugs. The effects on Cx43 hemichannel activity were assessed by measuring extracellular ATP release, while the effects at the transcriptional and translational levels were monitored by means of real-time quantitative reverse transcriptase polymerase chain reaction analysis and immunoblot analysis, respectively. Exposure to lopinavir and ritonavir combined (4:1 ratio), as well as to remdesivir, reduced Cx43 mRNA levels. None of the tested drugs affected Cx43 protein expression.


Subject(s)
COVID-19 Drug Treatment , Connexin 43 , Adenosine Triphosphate/metabolism , Connexin 43/drug effects , Connexin 43/genetics , Connexin 43/metabolism , Humans , Inflammation , Lopinavir/pharmacology , Lopinavir/therapeutic use , Ritonavir/pharmacology
5.
Antiviral Res ; 202: 105311, 2022 06.
Article in English | MEDLINE | ID: covidwho-1773103

ABSTRACT

Nelfinavir is an HIV protease inhibitor that has been widely prescribed as a component of highly active antiretroviral therapy, and has been reported to exert in vitro antiviral activity against SARS-CoV-2. We here assessed the effect of Nelfinavir in a SARS-CoV-2 infection model in hamsters. Despite the fact that Nelfinavir, [50 mg/kg twice daily (BID) for four consecutive days], did not reduce viral RNA load and infectious virus titres in the lung of infected animals, treatment resulted in a substantial improvement of SARS-CoV-2-induced lung pathology. This was accompanied by a dense infiltration of neutrophils in the lung interstitium which was similarly observed in non-infected hamsters. Nelfinavir resulted also in a marked increase in activated neutrophils in the blood, as observed in non-infected animals. Although Nelfinavir treatment did not alter the expression of chemoattractant receptors or adhesion molecules on human neutrophils, in vitro migration of human neutrophils to the major human neutrophil attractant CXCL8 was augmented by this protease inhibitor. Nelfinavir appears to induce an immunomodulatory effect associated with increasing neutrophil number and functionality, which may be linked to the marked improvement in SARS-CoV-2 lung pathology independent of its lack of antiviral activity. Since Nelfinavir is no longer used for the treatment of HIV, we studied the effect of two other HIV protease inhibitors, namely the combination Lopinavir/Ritonavir (Kaletra™) in this model. This combination resulted in a similar protective effect as Nelfinavir against SARS-CoV2 induced lung pathology in hamsters.


Subject(s)
COVID-19 Drug Treatment , HIV Infections , HIV Protease Inhibitors , Animals , Cricetinae , HIV Infections/drug therapy , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/therapeutic use , Lopinavir/pharmacology , Lopinavir/therapeutic use , Lung , Mesocricetus , Nelfinavir/pharmacology , Nelfinavir/therapeutic use , RNA, Viral , Ritonavir/therapeutic use , SARS-CoV-2
6.
Chem Commun (Camb) ; 57(93): 12476-12479, 2021 Nov 23.
Article in English | MEDLINE | ID: covidwho-1500757

ABSTRACT

We identified small-molecule enhancers of cellular stress granules by observing molecular crowding of proteins and RNAs in a time-dependent manner. Hit molecules sensitized the IRF3-mediated antiviral mechanism in the presence of poly(I:C) and inhibited the replication of SARS-CoV-2 by inducing stress granule formation. Thus, modulating multimolecular crowding can be a promising strategy against SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Benzopyrans/pharmacology , Cytoplasmic Granules/drug effects , Pyrazoles/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/chemistry , Benzopyrans/chemistry , Cell Line, Tumor , Chlorocebus aethiops , Cytoplasmic Granules/metabolism , Dose-Response Relationship, Drug , Drug Combinations , Humans , Interferon Regulatory Factor-3/metabolism , Lopinavir/pharmacology , Microbial Sensitivity Tests , Molecular Structure , Poly I-C/pharmacology , Pyrazoles/chemistry , Structure-Activity Relationship , Vero Cells
7.
J Cell Biochem ; 123(2): 347-358, 2022 02.
Article in English | MEDLINE | ID: covidwho-1499273

ABSTRACT

As per the World Health Organization report, around 226 844 344 confirmed positive cases and 4 666 334 deaths are reported till September 17, 2021 due to the recent viral outbreak. A novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) is responsible for the associated coronavirus disease (COVID-19), which causes serious or even fatal respiratory tract infection and yet no approved therapeutics or effective treatment is currently available to combat the outbreak. Due to the emergency, the drug repurposing approach is being explored for COVID-19. In this study, we attempt to understand the potential mechanism and also the effect of the approved antiviral drugs against the SARS-CoV-2 main protease (Mpro). To understand the mechanism of inhibition of the malaria drug hydroxychloroquine (HCQ) against SARS-CoV-2, we performed molecular interaction studies. The studies revealed that HCQ docked at the active site of the Human ACE2 receptor as a possible way of inhibition. Our in silico analysis revealed that the three drugs Lopinavir, Ritonavir, and Remdesivir showed interaction with the active site residues of Mpro. During molecular dynamics simulation, based on the binding free energy contributions, Lopinavir showed better results than Ritonavir and Remdesivir.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Hydroxychloroquine/pharmacology , Lopinavir/pharmacology , Receptors, Virus/drug effects , Ritonavir/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/pharmacology , Alanine/therapeutic use , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/physiology , Antiviral Agents/therapeutic use , Binding Sites , Catalytic Domain/drug effects , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/physiology , Datasets as Topic , Drug Repositioning , Energy Transfer , Humans , Hydroxychloroquine/therapeutic use , Lopinavir/therapeutic use , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Receptors, Virus/physiology , Ritonavir/therapeutic use
8.
Ann Pharm Fr ; 80(3): 273-279, 2022 May.
Article in English | MEDLINE | ID: covidwho-1437555

ABSTRACT

The potential usefulness of lopinavir-ritonavir on Covid 19 infection during the first wave of contamination in France had boosted Kaletra® syrup prescription to the point of causing its national shortage. In the intensive care units of Parisian hospitals in charge of patients with life-threatening viral contamination, caregivers had to resort to lopinavir-ritonavir-based tablets, crushing them and then dispersing the powder in milk to facilitate administration by nasogastric tube. The difficulties and poor control of this degraded mode, which does not always ensure control of the amount of the drug in the prepared dose and may induce insufficient antiviral exposure, led us to develop in a very short time, while ensuring quality control proportional to the risk, a liquid form as an alternative to Kaletra® oral solution shortage. For this purpose, we describe this compounding formulation and its preparation process, while justifying the quality control strategy adapted to the risk as well as its chemical and physical stability. Based on the chemical and physical studies, the preparation was showed to be stable during at least 2 months between +2°C and +8°C and 1 week at room temperature. This has resulted in the design of kits that include multi-dose packaging and a measuring device and contain the appropriate quantities of drugs to ensure at least one week's treatment for each patient, during which time the kit in use can be stored at room temperature. The intensive care team used this treatment under conditions that they considered well adapted until the imported specialty became available.


Subject(s)
COVID-19 Drug Treatment , Ritonavir , Drug Combinations , Hospitals , Humans , Lopinavir/pharmacology , Lopinavir/therapeutic use , Ritonavir/therapeutic use , SARS-CoV-2 , Suspensions
9.
Sci Rep ; 11(1): 17810, 2021 09 08.
Article in English | MEDLINE | ID: covidwho-1402118

ABSTRACT

Transporters in the human liver play a major role in the clearance of endo- and xenobiotics. Apical (canalicular) transporters extrude compounds to the bile, while basolateral hepatocyte transporters promote the uptake of, or expel, various compounds from/into the venous blood stream. In the present work we have examined the in vitro interactions of some key repurposed drugs advocated to treat COVID-19 (lopinavir, ritonavir, ivermectin, remdesivir and favipiravir), with the key drug transporters of hepatocytes. These transporters included ABCB11/BSEP, ABCC2/MRP2, and SLC47A1/MATE1 in the canalicular membrane, as well as ABCC3/MRP3, ABCC4/MRP4, SLC22A1/OCT1, SLCO1B1/OATP1B1, SLCO1B3/OATP1B3, and SLC10A1/NTCP, residing in the basolateral membrane. Lopinavir and ritonavir in low micromolar concentrations inhibited BSEP and MATE1 exporters, as well as OATP1B1/1B3 uptake transporters. Ritonavir had a similar inhibitory pattern, also inhibiting OCT1. Remdesivir strongly inhibited MRP4, OATP1B1/1B3, MATE1 and OCT1. Favipiravir had no significant effect on any of these transporters. Since both general drug metabolism and drug-induced liver toxicity are strongly dependent on the functioning of these transporters, the various interactions reported here may have important clinical relevance in the drug treatment of this viral disease and the existing co-morbidities.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Antiviral Agents/pharmacology , Liver-Specific Organic Anion Transporter 1/metabolism , Liver/drug effects , Organic Cation Transport Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11/antagonists & inhibitors , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/metabolism , Alanine/pharmacology , Alanine/therapeutic use , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Comorbidity , Drug Repositioning , Humans , Liver/metabolism , Liver/pathology , Liver-Specific Organic Anion Transporter 1/antagonists & inhibitors , Lopinavir/chemistry , Lopinavir/metabolism , Lopinavir/pharmacology , Lopinavir/therapeutic use , Multidrug Resistance-Associated Protein 2 , Organic Cation Transport Proteins/antagonists & inhibitors , Ritonavir/chemistry , Ritonavir/metabolism , Ritonavir/pharmacology , Ritonavir/therapeutic use , SARS-CoV-2/isolation & purification , Substrate Specificity , COVID-19 Drug Treatment
10.
Pharmacol Rep ; 73(6): 1520-1538, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1377631

ABSTRACT

The global spread of COVID-19 has imparted significant economic, medical, and social burdens. Like adults, children are affected by this pandemic. However, milder clinical symptoms are often experienced by them. Only a minimal proportion of the affected patients may develop severe and complicated COVID-19. Supportive treatment is recommended in all patients. Antiviral and immunomodulatory medications are spared for hospitalized children with respiratory distress or severe to critical disease. Up till now, remdesivir is the only USFDA-approved anti-COVID-19 medication indicated in the majority of symptomatic patients with moderate to severe disease. Dexamethasone is solely recommended in patients with respiratory distress maintained on oxygen or ventilatory support. The use of these medications in pediatric patients is founded on evidence deriving from adult studies. No randomized controlled trials (RCTs) involving pediatric COVID-19 patients have assessed these medications' efficacy and safety, among others. Similarly, three novel monoclonal anti-SARS-CoV-2 spike protein antibodies, bamlanivimab, casirivimab and imdevimab, have been recently authorized by the USFDA. Nonetheless, their efficacy has not been demonstrated by multiple RCTs. In this review, we aim to dissect the various potential therapeutics used in children with COVID-19. We aspire to provide a comprehensive review of the available evidence and display the mechanisms of action and the pharmacokinetic properties of the studied therapeutics. Our review offers an efficient and practical guide for treating children with COVID-19.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Azithromycin/pharmacology , Child , Dexamethasone/pharmacology , Humans , Hydroxychloroquine/pharmacology , Ivermectin/pharmacology , Lopinavir/pharmacology , Oseltamivir/pharmacology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
11.
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: covidwho-1374423

ABSTRACT

The novel coronavirus disease, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), rapidly spreading around the world, poses a major threat to the global public health. Herein, we demonstrated the binding mechanism of PF-07321332, α-ketoamide, lopinavir, and ritonavir to the coronavirus 3-chymotrypsin-like-protease (3CLpro) by means of docking and molecular dynamic (MD) simulations. The analysis of MD trajectories of 3CLpro with PF-07321332, α-ketoamide, lopinavir, and ritonavir revealed that 3CLpro-PF-07321332 and 3CLpro-α-ketoamide complexes remained stable compared with 3CLpro-ritonavir and 3CLpro-lopinavir. Investigating the dynamic behavior of ligand-protein interaction, ligands PF-07321332 and α-ketoamide showed stronger bonding via making interactions with catalytic dyad residues His41-Cys145 of 3CLpro. Lopinavir and ritonavir were unable to disrupt the catalytic dyad, as illustrated by increased bond length during the MD simulation. To decipher the ligand binding mode and affinity, ligand interactions with SARS-CoV-2 proteases and binding energy were calculated. The binding energy of the bespoke antiviral PF-07321332 clinical candidate was two times higher than that of α-ketoamide and three times than that of lopinavir and ritonavir. Our study elucidated in detail the binding mechanism of the potent PF-07321332 to 3CLpro along with the low potency of lopinavir and ritonavir due to weak binding affinity demonstrated by the binding energy data. This study will be helpful for the development and optimization of more specific compounds to combat coronavirus disease.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Protease Inhibitors/pharmacology , Lactams/pharmacology , Leucine/pharmacology , Nitriles/pharmacology , Proline/pharmacology , Antiviral Agents/therapeutic use , Catalytic Domain/drug effects , Coronavirus 3C Proteases/metabolism , Coronavirus Protease Inhibitors/therapeutic use , Humans , Lactams/therapeutic use , Leucine/therapeutic use , Lopinavir/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitriles/therapeutic use , Proline/therapeutic use , Ritonavir/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
12.
Eur Rev Med Pharmacol Sci ; 25(11): 4163-4173, 2021 06.
Article in English | MEDLINE | ID: covidwho-1281022

ABSTRACT

OBJECTIVE: As a beta-coronavirus, Coronavirus disease-2019 (COVID-19) has caused one of the most significant historical pandemics, as well as various health and medical challenges. Our purpose in this report is to collect, summarize, and articulate all essential information about antiviral drugs that may or may not be efficient for treating COVID-19. Clinical evidence about these drugs and their possible mechanisms of action are also discussed. MATERIALS AND METHODS: To conduct a comprehensive review, different keywords in various databases, including Web of Science, Scopus, Medline, PubMed, and Google Scholar, were searched relevant articles, especially the most recent ones, were selected and studied. These selected original research articles, review papers, systematic reviews, and even letters to the editors were then carefully reviewed for data collection. RESULTS: SARS-CoV-2 is the newest member of the coronavirus family, and there are still no promising therapies or particular antiviral compounds to fight it. After entering the body, SARS-CoV-2 penetrates the cells by attaching to specific lung cell receptors, called angiotensin-converting enzyme-2. Then, by employing cell division machinery, it replicates through a complex mechanism and spreads throughout the patient's body. Various antiviral drugs, including anti-influenza/HIV/HCV drugs, have been applied for treating COVID-19 patients. Due to the similarity of the structure and transcriptional mechanism of COVID-19 to a number of viruses, some of the listed drugs have been beneficial against SARS-CoV-2. However, the effectiveness of others is in an aura of ambiguity and doubt. CONCLUSIONS: Some of the antiviral medications listed and discussed in this article have been effective in the treatment of COVID-19 patients or preventing the virus from spreading further. However, other drugs have to be investigated to reach a reliable conclusion about their effectiveness or ineffectiveness.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/epidemiology , Data Analysis , SARS-CoV-2/drug effects , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , COVID-19/metabolism , Humans , Lopinavir/metabolism , Lopinavir/pharmacology , Lopinavir/therapeutic use , SARS-CoV-2/metabolism
13.
Eur J Pharmacol ; 896: 173922, 2021 Apr 05.
Article in English | MEDLINE | ID: covidwho-1252813

ABSTRACT

The coronavirus disease (COVID-19) is spreading between human populations mainly through nasal droplets. Currently, the vaccines have great hope, but it takes years for testing its efficacy in human. As there is no specific drug treatment available for COVID-19 pandemic, we explored in silico repurposing of drugs with dual inhibition properties by targeting transmembrane serine protease 2 (TMPRSS2) and human angiotensin-converting enzyme 2 (ACE2) from FDA-approved drugs. The TMPRSS2 and ACE2 dual inhibitors in COVID-19 would be a novel antiviral class of drugs called "entry inhibitors." For this purpose, approximately 2800 US-FDA approved drugs were docked using a virtual docking tool with the targets TMPRSS2 and ACE2. The best-fit drugs were selected as per docking scores and visual outcomes. Later on, drugs were selected on the basis of molecular dynamics simulations. The drugs alvimopan, arbekacin, dequalinum, fleroxacin, lopinavir, and valrubicin were shortlisted by visual analysis and molecular dynamics simulations. Among these, lopinavir and valrubicin were found to be superior in terms of dual inhibition. Thus, lopinavir and valrubicin have the potential of dual-target inhibition whereby preventing SARS-CoV-2 entry to the host. For repurposing of these drugs, further screening in vitro and in vivo would help in exploring clinically.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , COVID-19 Drug Treatment , COVID-19 , Doxorubicin/analogs & derivatives , Lopinavir/pharmacology , SARS-CoV-2 , Serine Endopeptidases/metabolism , Virus Internalization/drug effects , Antiviral Agents/pharmacology , COVID-19/metabolism , Doxorubicin/pharmacology , Drug Repositioning , Enzyme Inhibitors/classification , Enzyme Inhibitors/pharmacology , Humans , Molecular Docking Simulation/methods , Molecular Dynamics Simulation , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Topoisomerase II Inhibitors/pharmacology
14.
Virol Sin ; 35(6): 776-784, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1217480

ABSTRACT

The recent outbreak of novel coronavirus pneumonia (COVID-19) caused by a new coronavirus has posed a great threat to public health. Identifying safe and effective antivirals is of urgent demand to cure the huge number of patients. Virus-encoded proteases are considered potential drug targets. The human immunodeficiency virus protease inhibitors (lopinavir/ritonavir) has been recommended in the global Solidarity Trial in March launched by World Health Organization. However, there is currently no experimental evidence to support or against its clinical use. We evaluated the antiviral efficacy of lopinavir/ritonavir along with other two viral protease inhibitors in vitro, and discussed the possible inhibitory mechanism in silico. The in vitro to in vivo extrapolation was carried out to assess whether lopinavir/ritonavir could be effective in clinical. Among the four tested compounds, lopinavir showed the best inhibitory effect against the novel coronavirus infection. However, further in vitro to in vivo extrapolation of pharmacokinetics suggested that lopinavir/ritonavir could not reach effective concentration under standard dosing regimen [marketed as Kaletra®, contained lopinavir/ritonavir (200 mg/50 mg) tablets, recommended dosage is 400 mg/10 mg (2 tablets) twice daily]. This research concluded that lopinavir/ritonavir should be stopped for clinical use due to the huge gap between in vitro IC50 and free plasma concentration. Nevertheless, the structure-activity relationship analysis of the four inhibitors provided further information for de novel design of future viral protease inhibitors of SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Lopinavir/pharmacology , Ritonavir/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Viral Protease Inhibitors/pharmacology , Animals , Antiviral Agents/chemistry , COVID-19/blood , COVID-19/virology , Cell Line , Chlorocebus aethiops , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Drug Combinations , Humans , Lopinavir/blood , Male , Molecular Docking Simulation , Ritonavir/blood , Vero Cells , Viral Protease Inhibitors/chemistry
15.
J Biomol Struct Dyn ; 40(17): 7940-7948, 2022 10.
Article in English | MEDLINE | ID: covidwho-1158799

ABSTRACT

In response to the current pandemic caused by the novel SARS-CoV-2, we design new compounds based on Lopinavir structure as an FDA-approved antiviral agent which is currently under more evaluation in clinical trials for COVID-19 patients. This is the first example of the preparation of Lopinavir isosteres from the main core of Lopinavir conducted to various heterocyclic fragments. It is proposed that main protease inhibitors play an important role in the cycle life of coronavirus. Thus, the protease inhibition effect of synthesized compounds was studied by molecular docking method. All of these 10 molecules, showing a good docking score compared. Molecular dynamics (MD) simulations also confirmed the stability of the best-designed compound in Mpro active site.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Coronavirus Protease Inhibitors , Cysteine Endopeptidases/chemistry , Dipeptides , Ethylenes , Humans , Lopinavir/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology
16.
J Biomol Struct Dyn ; 40(16): 7367-7380, 2022 10.
Article in English | MEDLINE | ID: covidwho-1139803

ABSTRACT

COVID-19 is the disease caused by SARS-CoV-2 which has led to 2,643,000 deaths worldwide, a number which is rapidly increasing. Urgent studies to identify new antiviral drugs, repurpose existing drugs, or identify drugs that can target the overactive immune response are ongoing. Antiretroviral drugs (ARVs) have been tested in past human coronavirus infections, and also against SARS-CoV-2, but a trial of lopinavir and ritonavir failed to show any clinical benefit in COVID-19. However, there is limited data as to the course of COVID-19 in people living with HIV, with some studies showing a decreased mortality for those taking certain ARV regimens. We hypothesized that ARVs other than lopinavir and ritonavir might be responsible for some protection against the progression of COVID-19. Here, we used chemoinformatic analyses to predict which ARVs would bind and potentially inhibit the SARS-CoV-2 main protease (Mpro) or RNA-dependent-RNA-polymerase (RdRp) enzymes in silico. The drugs predicted to bind the SARS-CoV-2 Mpro included the protease inhibitors atazanavir and indinavir. The ARVs predicted to bind the catalytic site of the RdRp included Nucleoside Reverse Transcriptase Inhibitors, abacavir, emtricitabine, zidovudine, and tenofovir. Existing or new combinations of antiretroviral drugs could potentially prevent or ameliorate the course of COVID-19 if shown to inhibit SARS-CoV-2 in vitro and in clinical trials. Further studies are needed to establish the activity of ARVs for treatment or prevention of SARS-CoV-2 infection .Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , HIV Infections , Pre-Exposure Prophylaxis , COVID-19/prevention & control , HIV Infections/drug therapy , HIV Infections/prevention & control , Humans , Lopinavir/pharmacology , RNA , RNA-Dependent RNA Polymerase , Ritonavir/pharmacology , SARS-CoV-2
17.
Comb Chem High Throughput Screen ; 24(3): 441-454, 2021.
Article in English | MEDLINE | ID: covidwho-1102440

ABSTRACT

BACKGROUND: Coronavirus Disease 2019 (COVID-19) pandemic continues to threaten patients, societies and healthcare systems around the world. There is an urgent need to search for possible medications. OBJECTIVE: This article intends to use virtual screening and molecular docking methods to find potential inhibitors from existing drugs that can respond to COVID-19. METHODS: To take part in the current research investigation and to define a potential target drug that may protect the world from the pandemic of corona disease, a virtual screening study of 129 approved drugs was carried out which showed that their metabolic characteristics, dosages used, potential efficacy and side effects are clear as they have been approved for treating existing infections. Especially 12 drugs against chronic hepatitis B virus, 37 against chronic hepatitis C virus, 37 against human immunodeficiency virus, 14 anti-herpesvirus, 11 anti-influenza, and 18 other drugs currently on the market were considered for this study. These drugs were then evaluated using virtual screening and molecular docking studies on the active site of the (SARS-CoV-2) main protease (6lu7). Once the efficacy of the drug is determined, it can be approved for its in vitro and in vivo activity against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which can be beneficial for the rapid clinical treatment of patients. These drugs were considered potentially effective against SARS-CoV-2 and those with high molecular docking scores were proposed as novel candidates for repurposing. The N3 inhibitor cocrystallized with protease (6lu7) and the anti-HIV protease inhibitor Lopinavir were used as standards for comparison. RESULTS: The results suggest the effectiveness of Beclabuvir, Nilotinib, Tirilazad, Trametinib and Glecaprevir as potent drugs against SARS-CoV-2 since they tightly bind to its main protease. CONCLUSION: These promising drugs can inhibit the replication of the virus; hence, the repurposing of these compounds is suggested for the treatment of COVID-19. No toxicity measurements are required for these drugs since they were previously tested prior to their approval by the FDA. However, the assessment of these potential inhibitors as clinical drugs requires further in vivo tests of these drugs.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/metabolism , Drug Evaluation, Preclinical/methods , SARS-CoV-2/drug effects , Antiviral Agents/metabolism , Binding Sites , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Drug Repositioning , Hepacivirus/drug effects , Influenza A virus/drug effects , Lopinavir/chemistry , Lopinavir/pharmacology , Molecular Docking Simulation , Pyridones/chemistry , Pyridones/pharmacology , Pyrimidinones/chemistry , Pyrimidinones/pharmacology
18.
Viruses ; 13(2)2021 02 23.
Article in English | MEDLINE | ID: covidwho-1100154

ABSTRACT

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China at the end of 2019 causing a large global outbreak. As treatments are of the utmost importance, drug repurposing embodies a rich and rapid drug discovery landscape, where candidate drug compounds could be identified and optimized. To this end, we tested seven compounds for their ability to reduce replication of human coronavirus (HCoV)-229E, another member of the coronavirus family. Among these seven drugs tested, four of them, namely rapamycin, disulfiram, loperamide and valproic acid, were highly cytotoxic and did not warrant further testing. In contrast, we observed a reduction of the viral titer by 80% with resveratrol (50% effective concentration (EC50) = 4.6 µM) and lopinavir/ritonavir (EC50 = 8.8 µM) and by 60% with chloroquine (EC50 = 5 µM) with very limited cytotoxicity. Among these three drugs, resveratrol was less cytotoxic (cytotoxic concentration 50 (CC50) = 210 µM) than lopinavir/ritonavir (CC50 = 102 µM) and chloroquine (CC50 = 67 µM). Thus, among the seven drugs tested against HCoV-229E, resveratrol demonstrated the optimal antiviral response with low cytotoxicity with a selectivity index (SI) of 45.65. Similarly, among the three drugs with an anti-HCoV-229E activity, namely lopinavir/ritonavir, chloroquine and resveratrol, only the latter showed a reduction of the viral titer on SARS-CoV-2 with reduced cytotoxicity. This opens the door to further evaluation to fight Covid-19.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 229E, Human/drug effects , Resveratrol/pharmacology , Ritonavir/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Cell Line , Chloroquine/pharmacology , Coronavirus 229E, Human/physiology , Drug Repositioning , Humans , Lopinavir/pharmacology , Male , SARS-CoV-2/physiology , Viral Load
20.
Ann Palliat Med ; 10(1): 707-720, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1030457

ABSTRACT

The whole world is battling through coronavirus disease 2019 (COVID-19) which is a fatal pandemic. In the early 2020, the World Health Organization (WHO) declared it as a global health emergency without definitive treatments and preventive approaches. In the absence of definitive therapeutic agents, this thorough review summarizes and outlines the potency and safety of all molecules and therapeutics which may have potential antiviral effects. A number of molecules and therapeutics licensed or being tested for some other conditions were found effective in different in vitro studies as well as in many small sample-sized clinical trials and independent case studies. However, in those clinical trials, there were some limitations which need to be overcome to find the most promising antiviral against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In conclusion, many of above-mentioned antivirals seems to have some therapeutic effects but none of them have been shown to have a strong evidence for their proper recommendation and approval in the treatment of COVID-19. Constantly evolving new evidences, exclusive adult data, language barrier, and type of study (observational, retrospective, small-sized clinical trials, or independent case series) resulted to the several limitations of this review. The need for multicentered, large sample-sized, randomized, placebo-controlled trials on COVID-19 patients to reach a proper conclusion on the most promising antiviral agent is warranted.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Amides/pharmacology , Amides/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Azetidines/pharmacology , Azetidines/therapeutic use , Chloroquine/pharmacology , Chloroquine/therapeutic use , Drug Combinations , Humans , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Immunization, Passive , Indoles/pharmacology , Indoles/therapeutic use , Interferons/pharmacology , Interferons/therapeutic use , Ivermectin/pharmacology , Ivermectin/therapeutic use , Lopinavir/pharmacology , Lopinavir/therapeutic use , Nitro Compounds , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Purines/pharmacology , Purines/therapeutic use , Pyrazines/pharmacology , Pyrazines/therapeutic use , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Ribavirin/pharmacology , Ribavirin/therapeutic use , Ritonavir/pharmacology , Ritonavir/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Thiazoles/pharmacology , Thiazoles/therapeutic use , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL